Monte Carlo Study of Pion
Absorption in LArlAT

Andrew Olivier for the LArIAT
Collaboration

APS April Meeting
April 18, 2016



The Deep Underground Neutrino
Experiment

* The Deep Underground Neutrino Experiment will
precisely measure parameters of neutrino oscillations

in a beam of high energy neutrinos sent from Fermilab
in Batavia, IL to Lead, SD

— Plans to use liquid argon time projection chamber (LArTPC)

technology to capture energy deposited and reconstruct
topologies of neutrino interactions

— Requires precise knowledge of responses of LArTPCs to
various charged particles

— Cross sections are needed for interactions like pion

absorption and pion charge exchange that change the
final state of a neutrino interaction

— Photon showers from neutral pion decays can be mistaken
for electrons from electron neutrino interactions if one
photon does not convert in the TPC
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LArlAT

 The Liquid Argon Time Projection Chamber in
a Test Beam experiment studies charged
particle interactions in a LArTPC

— Exposes a LArTPC to a controlled beam of charged
particles

— Test beam detectors identify beam particles for
comparison with TPC

— Uses a preexisting small TPC: the modified
ArgoNeut TPC



LArIAT’s Beamline

Beam of mixed particles produced at start of beamline
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LArIAT’s Beamline

Beam of mixed particles produced at start of beamline
Time of Flight detectors determine how long particles took to traverse beamline
Wire Chambers track positions of particles as they approach the TPC
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SECIONDARY BEAM

Aerogel detectors measure particles’ velocities

Halo veto detects particles traveling along the beam that may not have been selected by magnets
LArIAT TPC records images of particle interactions

Punch through veto detects particles that pass through the TPC
Muon range stack measures energies of exiting muons based on how much steel they penetrate
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LArIAT’s Beamline

Beam of mixed particles produced at start of beamline
Time of Flight detectors determine how long particles took to traverse beamline
Wire Chambers track positions of particles as they approach the TPC

SECJONDARY BEAM

Aerogel detectors measure particles’ velocities

Halo veto detects particles traveling along the beam that may not have been selected by magnets
LArIAT TPC records images of particle interactions

Punch through veto detects particles that pass through the TPC
Muon range stack measures energies of exiting muons based on how much steel they penetrate
Together, LArlAT’s beamline detectors can identify a particle’s species and measure its momentum
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Monte Carlo Sample

Momenta uniformly distributed between 0
MeV/c and 1500 MeV/c

18,000 mt*
10,000 of each of u* p*, and K *
Started all particles at the beam window

For this study, all “beamline” values are taken
from MC truth information



Signal Definition

An event in which a charged pion enters the TPC and interacts with no charged pions
leaving the interaction
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Signal Definition

An event in which a charged pion enters the TPC and interacts with no charged pions
leaving the interaction
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dE/dx in MeV/icm?

dE/dx in MeV/cm?

Particle Identification

Identifying a particle’s species is key to identifying an event topology
Exploits differences in particles’ energy loss in matter as a function of distance traveled
Two populations:

— Particles that lose all energy by ionization

— Particles that stop by interacting

For a track’s calorimetry information, calculate a likelihood for each probability density function (PDF)
provided

— Pion, proton, muon, and kaon hypotheses: used for incident particles

pions protons

g
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dE/dx in MeV/cm?

Particle Identification

Identifying a particle’s species is key to identifying an event topology

Exploits differences in particles’ energy loss in matter as a function of distance traveled

Two populations:

— Particles that lose all energy by ionization

— Particles that stop by interacting
For a track’s calorimetry information, calculate a likelihood for each probability density function (PDF)

provided

— Pion, proton, muon, and kaon hypotheses: used for incident particles

— Pion and proton hypotheses: used for daughters of incident particles

pions
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Signal Selection
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Signal Selection

* Looking for events with an incident pion
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Signal Selection

Looking for events with an incident pion
To identify topology, need interaction point in the TPC
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Signal Selection

* Looking for events with an incident pion
* To identify topology, need interaction point in the TPC
* Check that each track is more proton-like than pion-like
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Signal Selection

Looking for events with an incident pion
To identify topology, need interaction point in the TPC
Check that each track is more proton-like than pion-like
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Ratio of Selected Events to Total Events

Performance with Reweighting

Before Selection

Other Pion Interactions

Pion Absorption and Charge Exchange
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Conclusions, and Future Work

* Conclusions

— Implemented a likelihood-based particle identification
method

— Developed an algorithm to search for pion absorption and
charge exchange events based on event topology

— Demonstrated that this algorithm substantially reduces
pion background
* >60% efficiency
* >50% purity
* Future Work

— Extend purity measurement to include other incident
particles

— Extend analysis to measure cross sections for data
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Likelihood Definition

Given some set of reconstructed points {(x, y.)} of the
form (residual range, dE/dx)

Given a probability density function f _ ..
histogram of dE/dx versus residual range

In(Lparticle) = ?=1 ln(fparticle (xi' yl))
To make the best use of double precision values,

In(Ly.rice) is calculated as a sum of natural logs rather
than as a product

IN(Lyion/Lproton) = IN(Lyion) = IN(Lyot0n) is plotted in
likelihood ratio plots

(X ’ y)/ a2-D
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Pion-Proton Separation

| ! ! ! | offon o1 A4, 1 |

Entries = 3373
Mean 104.7
RMS 59.28
—— pions
— protons

~400 ~200 0 200

Pion and proton likelihoods from Monte Carlo samples
X-axis is In(L.;..) — In(L

pion proton)

400

Separation in distributions corresponds to how well pions can be

distinguished from protons by PID
PID picks the hypothesis with the largest likelihood
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Kinetic Energy Values in
Plots

True Interaction Kinetic Energy = M,(y-1)
Reconstructed Interaction Kinetic Energy
Start with “beamline” kinetic energy: taken from truth kinetic energy at
beam window
Subtract 8.6 MeV for energy lost between beam window and TPC as
done by total pion cross section group
Calorimetry provides kinetic energy and total range
Option 1: Subtract kinetic energy (in TPC) from
estimated kinetic energy at TPC front face
Option 2: Take average dE/dx to be 2.3 MeV/cm for all
pions in this study. Subtract
2.3MeV/cm*Range from estimated

kinetic energy at TPC front face
Use method with less deviation from true values



Fractional Interaction Kinetic
Energy Resolution
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Selection Algorithm Performance on
Pions

Before Selection After Selection
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Reweighting

* Flat momentum Weight Spectrum
spectrum of
Monte Carlo -
sample does not -
reflect LArlAT e
beam 06
— Expect more =
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Removing Other Incident Particles

Before Selection

After Selection
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Data Collection

* Run |
— May-July 2015
— Beam tuning with help of accelerator division
— Data currently being analyzed

* Run Il
— Currently in progress
— Planned for February-July 2016



Motivation: Needs of v-experiments

« Simplified view of
how we do neutrino
experiments goes
like:

- Fire a beam of neutrinos
into your detector

- Detect the particles that

@ @ come out from the
interaction

- Reconstruct the

} ’ . .
‘ ‘ information about the
" . neutrino
Vv N, Y
T n

N,/

* But we all know that
the world is a much
more complicated
place....

o) (e * 2
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Motivation: Needs of v-experiments

Typical neutrino event

Outgoing lepton:
Flavor: Charge Current vs. Neutral
Current, u+Vvs. -, e VS. y

Incoming neutrino:
Flavor unknown

Energy unknown Energy: measure

-----»----

Mesons:

Final State
Interactions!

Energy? |dentity?
Target nucleus:

Nucleus “sandbags” at Q2 ~ 0 Outgoing nucleons:

Visible?

Energy?

N-N correlations
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